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Summary 

We have employed ideas on self-adjoint operators to formulate the problem on thermoconvection in bilayers and 
in bounded geometries. In particular, use of such operators helps in obtaining the behavior of the critical 
Rayleigh number with respect to domain size, fluid properties and boundary conditions. Two important cases are 
considered. These are (a) the case of a fluid bounded above by a solid of finite conductivity and height and (b) 
the case of two immiscible fluids which are vertically stacked against each other. 

1. Introduction 

Thermal convection in fluid layers is a well-known phenomenon. A number of very good 
review articles by Koschmieder [1], Rogers [2] and Busse [3] have explained various 
developments in the area. The super"o two-volume treatise by Joseph [4] goes into 
considerable detail on various nuances of the thermal stability problem. This article is 
concerned with convection in bilayers. We are concerned, here, with two possible cases. 
These are (a) a fluid layer underneath a finite solid slab of finite conductivity but bounded 
below by a solid of infinite conductivity and (b) two fluid layers of finite depths but 
bounded by two horizontal plates of finite or infinite conductivity. The first case is 
sometimes known as the Rayleigh-Jeffreys problem. This problem has been considered 
earlier by Hurle, Jakeman and Pike [5], Nield [6] and Busse and Riahi [7]. These studies 
deal with the phenomenon for fluids of infinite lateral extent. The second case (also for 
infinite fluid layers) received attention by Smith [8], Zeren and Reynolds [9] and others. 
We shall deal with a simpler problem for case (b) in order to exemplify the method of 
analysis. 

The purpose of this paper  is to obtain some simple results from the theory of 
differential operators for both cases with the important difference that we are now 
concerned with fluids that are bounded laterally. We shall place only weak restrictions on 
the problem given by case (a) but the restrictions on case (b) will be stronger. Sections 2 - 4  
will deal with case (a) and involve problem formulation, properties of the steady 
convective solutions and differential inequalities obtained from the linerarized stability 
problem of the quiescent solution. Sections 5 -6  deal analogously with case (b). The details 
for derivations concerning case (b) will be limited if the anologous details have been given 
earlier for case (a). Many of the methods used in this paper are similar to those of 
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Narayanan [10] for the case of thermohaline convection. These methods involve the use of 
self-adjoint operators and the Fredholm alternative (Stakgold [11]). 

2. Problem formulation for case (a) 

We shall consider convection due to thermal gradients in a vertical container of arbitrary 
cross-section. An example is provided in Fig. 1 and the dimensionless depth of the fluid is 
unity. We invoke the Boussinesq approximation (Mihaljan [12]) and a Newtonion con- 
stitutive equation is assumed. In whatever that follows, bold-face variables are either 
vectors, tensors or matrix operators. 

The governing equations in the fluid phase are: 

Continuity: V"  V= O, (2.1) 

1 3V Ra 
Motion: p---~ a---t + V.  V V =  - V P  + ~ TF+ ~2V, (2.2) 

~T 
Energy: ~ + Pr(V. V T ) =  V2T. (2.3) 

The energy equation in the solid medium of finite conductivity is: 

* OTS = V2T s. (2.4) a --~-- 

1+8 

Fluid 'b' or Solid 

z 

Fluid 'a' 

Fig. 1. Schematic of physical problem. 
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Here V and T are velocity and temperature fields. Pr and Ra are Prandtl and Rayleigh 
numbers, respectively, and F is a unit dimensionless force acting in the direction of 
gravity. Ra is defined as 

Ra = f ig(  T 1 - -  T O ) L 3 /OlT p , ( 2 . 5 )  

where T O and Tj represent the fluid temperatures at top and bottom of the fluid layer, a r 

is the thermal diffusivity of the fluid, p is the kinematic viscosity, L is the depth of the 
fluid and 6 the thickness of solid, a* is the ratio of thermal diffusivities of fluid and solid 
and 8 is the thermal expansion coefficient. The following variables are used for the 
purpose of rendering the equations dimensionless: 

V =  V * L / u ,  (2.6a) 

P = P * L e / P o  ~'2, (2.6b) 

t = t * k / p o C  p L 2 , (2.6c) 

r =  ( r ,  - : " , ) / ( T o  - :r , ) .  (2.6d) 

Asterisked variables are dimensioned. We shall restrict our study to situations where 

R a ( F ×  VTc) = 0. (2.7) 

This is a necessary condition for an initial temperature field T c to exist in conjuction with 
a quiescent (or zero-velocity field) case. We now define the following matrix differential 
operator which will be used in the next section: 

L = 

V 2 0 0 0 

0 V 2 0 0 

0 0 V2 Ra 
Pr 

Ra Ra 
- -  - - V  2 0 

0 0 Pr pr 2 

0 0 0 0 fl R----~av2 
pr 2 

(2.8) 

where fl will be defined later; V 2 is the usual Laplacian operator. 
We may define a five-vector Q such that 

Q t - - [ U , V , W , T ,  TS],  (2.9) 

where U, V, W are the rectangular cartesian components of V and ' t '  represents the 
transpose operation. 

Following Malkus and Veronis [13] and Schluter et al. [14] we introduce the following 
perturbation series for the steady fields of Q and P: 

Q = Qc + eQo + e2Q, + O(e3), (2.10) 
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P = Pc + eP o + e2Pl + O(eS), (2.11) 

Ra = Ra 0 + e Ra, + O(e2). (2.12) 

Here ~ is an indicator of the deviation from the quiescent solution; Q¢ and Pc are the 
solution fields in the quiescent state. The perturbed velocity fields will be denoted by U~ 
and the perturbed temperature fields will be denoted by 0 i and 07. We may substitute the 
above perturbation series into the governing equations (2.1)-(2.4) and obtain for terms of 
0(~): 

LOo = aJ'o (2.13) 

where 

dr=  ( ~ / a x ,  a / a y ,  a l a z ,  o, 0). (2.14) 

Clearly the U~ are solenoidal. The casting of the thermoconvective equations into matrix 
operator form is not new (Joseph [4], Narayanan [10]). 

The boundary conditions for the fluid are 

U~'n = 0 along aS, (2.15) 

S, .n  - n ( n ' S , . n )  = 0 on aS r ,  ( 2 . 1 6 )  

U i = 0 o n  a S  0 agF,  ( 2 . 1 7 )  

where S i is the extra stress tensor. We also have 

vOi 'n  = 0 on aS u ,  (2.18) 

0 i = 0 on aS o, (2.19) 

where aSo includes the bottom surface. 
The boundary conditions for the solid medium are 

07 = 0 on aS;  (2.20) 

where aS~ includes the top surface of the solid and 

vO[ .n  = 0 on aS~. (2.21) 

The sides of the container will support Dirichlet or Neumann conditions. Along the 
common boundary between the fluid and solid, we have 

VOi" n = f l V O s  " n (2.22) 

and 

0 i = 07, (2.23) 
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where fl represents the ratio of thermal conductivities. A Fourier law has implicitly been 
assumed, n is the unit outward normal and 3S as well as aS' are the closed bounding 
surfaces of [" and f 's-- the fluid and solid domains, respectively. It is also noteworthy that 
the equations in the solid and fluid media are uncoupled from each other only if a Nusselt 
number is introduced. In such an event equations (2.22) and (2.23) would be replaced by 

v o ,  . ,, + N u  o, = 0 ( 2 . 2 4 )  

where Nu(x) is a positive real-valued function of position. We finally note that the 
boundary data is often abreviated by B(Qi) = O. 

3. Properties of convective motion for case (a) 

We may define an inner product between two vectors a and b as (a ,  b) such that 

(a, b) = fv  a.  bdV (3.1) 

where V is the domain of the integral operator in which a and b are defined. 
We can easily see that L is self-adjoint when the above inner product is utilized. We 

shall first state a few properties which can easily be proved. 

Property 3.1. The bifurcation point Ra 0 cannot be negative. 

Property 3.2. Steady convective motion cannot exist if Ra < 0. We also have Ra 1 = 0, i.e. 
there exists no subcritical steady motion. 

The proofs follow standard methods (Joseph [4]) and utilize the fact that L is 
self-adjoint and U 0 is solenoidal. Property 3.1 follows when we take the inner product of 
equation (2.13) with Q~ (the complex conjugate of Q0)- Property 3.2 follows on consider- 
ing terms of O(e2). We have 

LQ1 = d P  1 hi- h 1 (3.2) 

where 

[ 
Ral 0 Rao ] 

h,,--- [(Uo.  Uo)x, (Uo. (Uo. - P-7 o, Uo.  Oo, oil • (3.3) 

On taking the inner products of equation (2.13) with O1 and equation (3.2) with Q0 and 
evaluating the difference we can see that Ra I = 0. The solenoidal character of U 0, U 1 and 
self-adjointness of L are instrumental in the proof. From here on we shall always assume 
that Ra0 > 0. 

We can consider the dependence of Ra 0 on fl by taking the derivatives of equation 
(2.13) and the boundary conditions with respect to ft. Tilde ( - )  overbars represent 
differentiation with respect to ft. We obtain 

L~)o = a~o + I;o (3.4) 
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where 

t;~ = [0, 0, Tr°° ~,a0, 0, 0]. (3.5) 

The boundary conditions retain a similar form except for equation (2.22) which is replaced 
by: 

VOo.,, =/3v0g.- + vo~... (3.6) 

We can take the inner product of equation (3.4) with Q0 and likewise the inner product of 
equation (2.13) with Qo- On evaluating the difference and using the fact that Uo is 
solenoidal we get 

<Oo, o) = f RL° 0oV 0o- 0oV 0o)d " 
a~ pr ~ " 

+ f fl Rao (0~V2O~ - O ~ v E 0 ~ ) d ~ .  
Jf~o Pr 2 

(3.7) 

Equations (3.5), (3.6) and (3.7) give 0 Ra0/a/3 > 0. Thus we have the following property: 

Property 3.3. For thermoconvective motion in a bounded container, the critical Ra 
increases monotonically with 13- 

Property 3.3 agrees with the trend shown by the numerical results of Nield [6]. We now 
consider the change of Ra 0 with domain size. The effect of ~ is seen by differentiating 
equation (2.13). The 'z '  co-ordinate in ~ is immobolized by using a transformation 
3 = z / &  If '^' overbars represent derivatives with respect to 8, then we see that 

LQ0 = d/50 +/~o (3.8) 

Here 

" [ RaoOo Rao2/3 a2o~ ] 
h ~ = [ 0 , 0 -  p---~,0, 8pr2 az 2 ] .  (3.9) 

On taking the inner products of equation (3.8) with Q0 and equation (2.13) with Qo and 
then evaluating the difference we obtain: 

^ 2/3 Ra o - s  ~201~ "¢ -Ra°f  O°W°df'~ff " ~e--~ f~Y°-OSJ ~uv'=O" (3.10) 

Equation (3.10) does not yield any definitive result since the behavior of the second 
integral is unknown. We shall obtain a stronger result later. 

The behavior of Ra o with lateral domain size is inspected by considering the restricted 
case of a rectangular box whose sides extend to L I in the 'x '  direction and L 2 in the 'y '  
direction. We may immobolize the 'x '  co-ordinate in both (fluid and solid) domains. This 
is done by introduction of a new variable ~ = x/L~.  We differentiate equation (2.13) with 



respect to L l and obtain 

tOo = + + aeo + & .  

The overbars (-) represent derivatives with respect to L I. Also 

hrt = - 2 [  _ _  V~00 ] - ~  V•Uo ' VEVo, V2Wo, Raopr 2 V200, flRaopr 2 2 . .  

and 
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(3.11) 

(3.12) 

r , _ [ - 1  OPo - 0  0 -  2 Rao0o ' - 2  Raowo,0  ] (3.13) 
h 2 -  L/  0x '0'--PT-r Ra° L 1 Pr L 1 Pr " 

xTn 2 represents the two-dimensional Laplacian in 'y '  and 'z '. We also observe that 

1 OU 0 (3.14) 
V'Uo L I ~x" 

On taking the inner product of equation (3.11) with Qo and equation (2.13) with Qo, we 
get 

(Q0, LQ0), -(Qo,LQo)=(Qo,dffo)-(Q.o,dPo)+(Oo,(hl+h2)). (3.15) 

The left-hand side of equation (3.15) is zero because L is self-adjoint. The right-hand side 
in conjunction with equation (3.14) and a solenoidal U o yields 

ff,- O°vZO°(Ra° + 4-~-Ra° ) df'> (3.16) 

This leads us to Property (3.4). 

Property 3.4. The bifurcation points Ra o of the Boussinesq equations in a rectangular box 
behave such that 

a (RaoL41)>0. 
OL1 

Similar behavior has been shown for axisymmetric motion in a right circular cylinder by 
Vrentas et al. [16]. 

Linear stability of quiescent solution for case (a) 

We may consider the stability of the conductive state by perturbing Qc with Q' e st. Here s 
is complex and Q' is infinitesimal so that introduction of the perturbation into the 
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Boussinesq equations (2.1)-(2.4) and attendant boundary data yields 

LQ' = dP' + sQ;, B(Q') = O. 

Here 

, (U '  V' R a W'  RaO' a * R a B o .  
Qt - Pr ' Pr ' Pr ' pr 2 ' pr 2 " 

(4.1) 

Property 4.1. s is real. The proof is quite standard (Sherman and Ostrach [15]) and requires 
premultiplication of (4.1) and its conjugate by Q'* and Q', respectively. Self-adjointness of 
L and the solenoidal character of U' and U'* assures that s = s * =  o (say). We now 
consider necessary conditions for (~o/~ Ra)Ra0 > 0. Thus we differentiate equation (4.1) 
with respect to Ra and remember that a = 0 when Ra = Ra 0. We obtain 

L{)' = d/5' + Q;6 +/~. (4.2) 

Here/~ is a five-vector, and is null except for the third dement,  which is equal to - 0 ' /Pr .  
The '^' overbars represent derivatives with respect to Ra. 

Premultiplication of equation (4.2) by Q' and equation (4.1) by {)', setting o = 0 in 
equation (4.1) and finally evaluating the difference of inner products yields 

(6 )Rao / (  (IU'I2 0'2 Ra° t d V + f ( 0 ' ~ )  2a* Ra°/3 d ~ )  =fp~-~'rS'dV. 
[ Jv~ ~ + Pr ~ ] ., Pr 2 

(4.3) 

This leads to Property 4.2. 

Property 4.2. If (6)Rao > 0 then it necessarily follows that 

[ I U ' l : + o , 2 R a o d p + f  ( 0 - ) 2 a ,  Ra_~o2B d r / / >  0" 
J~ Pr pr 2 af, Pr ) 

(4.4) 

The left-hand side of the above inequality will be abreviated by E. 
Differentiation of equation (4.1) and the boundary data with respect to fl and 

employment of earlier methodology gives 

]Rao Ra0 
(4.5) 

where ~ is the location of the common boundary 0S s between fluid and solid. The term in 
the square bracket of the right-hand side of equation (4.5) can symbollically be replaced 
by -Nu(O' )2 / f l  which must be negative. 

We therefore have the following result 

Property 4.3. (00/0fl)Ra0 < 0 provided (3o/0 Ra)Rao > 0. 
We finally end this section by considering the effect of solid thickness 8 on o. Using a 
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proof similar to that for obtaining equation (3.10) we get 

( ) - 2  Ra°fl r 'sD20's ~ 
3o E / 0 -Z~_2 dV~. (4.6) 
" ~  Ra 0 3 Pr 2 J¢4 3z 

We now assert that the eigenvalues of equation (2.13) i.e. Ra o are simple so that 

Q' = yQo (4.7) 

where ~, is a nonzero finite constant. We obtain 

3o /~y2 = - 2 f l  Ra o y 2 f  0 d ~ d ~  (4.8) 
- ~  R.o 3 pr z a~ Dz 

where 

= ElY 2. (4.9) 

Comparison of equations (4.8) and (3.10) yields 

( _ ~ '  3Rao  
) a a o / - - - ~  < 0. (4.10) 

Thus we get a condition which is stronger than equation (3.10), i.e. Property 4.4. 

Property 4.4. If the eigenvalues Ra o are simple and if (0o/ORa)Ra0 > 0 then inequality 
(4.10) is true. 

5. Problem formulation for case (b) 

The governing equations for convection in bounded bilayers of fluid are given below. For 
fluid ' a '  we have 
Equations of motion: 

1 OV ~ 
Pr o 3t 

- -  -~ V a . ~ T v a =  - ~TP° + ~--~ TaF + V2V °. (5.1) 

Equation of energy: 

DT ~ 
3-t- + PraV°" VT° = v2T~" (5.2) 

For fluid 'b '  we have 
Equations of motion: 

a* 3V b Ra b 
- - - - +  V b. xTV b= -XTPb+ T b F +  ~ 7 2 V  b.  (5.3) 
Pr b 3t prb8 4 
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Equation of energy: 

3T b ~ v 2 T b .  et*--~-- + P r y  °. V T  b = (5.4) 

V ° and V b are  solenoidal velocity fields. Here Ra a and Ra b are the Rayleigh numbers and 
are defined as usual. The expression for Ra a contains the temperature difference between 
the horizontal planes that bound fluid 'a  '. The expression Ra b is defined in an analogous 
fashion, a* represents the ratio of thermal diffusivities in each phase. 

We define a few terms which will arise after introduction of the usual perturbation 
series: 

V 2 / K  1 

V 2/ /K 1 

L I =  V 2/KI 8 Pr o 

3 Pr o 3V 2 

(5.5) 

(0) 

All the elements without entries take on zero values. (0) represents a null matrix of fourth 
order and L ~ is therefore an eighth-order matrix with only six nonzero elements. Likewise: 

(o) 
V 2 / K  2 

t 2 V 2 / K  2 

V 2 / K 2  

PrbCtfl 

Prbafl 

8af lV 2 

(5.6) 

R a  a 
K1 = v 2" (5.7) 

and 

R a  b 

K 2 = o t ~  4 pro2. (5 .8)  

We introduce the following eight-vector 

~_t= [U a, V a, W a, T a, U b, V b, W b, T b] (5.9) 

and as before U, V, W are the rectangular cartesian components of V. We will now 
consider the steady fields for Q, pa and p6, As in the analysis of case (a)  we shall expand 
Q, po, and pb in a perturbation series with e as the series parameters. 

Q = O~ + eQo + O(e2), (5.10) 
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P° = ec" + ,e0 + o ( d ) ,  (5.11) 

+ (5.12) 

Ra ~ = Ra~ + e Ra~ + O(e 2) for fixed Ra b, (5.13a) 

Ra b = Ra b + e Ra b + O(e 2) for fixed Ra ~. (5.13b) 

Once again the subscript 'c '  reflects the linear or conduction profile which is compatible 
to a no flow situation. On substituting the above series into the governing equations we 
obtain 

1 ~ a 1 b b 
(L ,  + L z ) Q o  ='-~ ld  P• +'-~zd P~), (5.14) 

where d ~ and d b are given by the following eight vectors 

d" - (O/Ox, O/Oy, O/Oz, O, O, O, O, 0), (5.15a) 

d ° =- (0, O, O, O, O/Ox, O/by ,  O/Oz, 0). (5.15b) 

The perturbed velocity and temperature fields are denoted by U+ ~, 0+ a and U, b, 0~ b, 
respectively. We can also see that U~ ~ and U/b are solenoidal. 

The boundary conditions for each fluid phase are as follows: 

U~ "'b" n = 0 on 0S a'b, 

U, ~'b = 0 on OS a'b N OS,g 'b. 

on OS,g 'b, 

(5.16) 

(5.17) 

(5.18) 

where S+ is the extra stress tensor, 0S represents the bounding surface for each phase and 
OS r is a surface that includes the common area between both phases. The above conditions 
are clearly somewhat restricted since they assume the case of no surface deflection and a 
traction-free common interphase. The assumption of a flat interphase is reasonable 
provided the fluid layers are not thin. It appears that the deflection of the free surface 
plays only a small role in the experiments of Hoard et al. [17] and Palmer and Berg [18]. A 
traction-free interphase is a strong restriction which is imposed in order to contain 
ourselves to a simpler problem. It is noteworthy that there is another physically realizable 
case, that falls within the category of the boundary conditions, which are considered 
above. This is the situation of two fluids separated by a thin, highly conductive rigid 
membrane. We also note that the effects of surface tension gradients are not considered 
here. 

The boundary conditions on the perturbed temperature field are 

~70/"b. n = 0 on OS~, 'b, 

Oi a'b = 0 on aS~ 'b, 

VSi ''b " n + Nu"'bOi ''b = 0 on OS,~ 'b 

(5.19) 

(5.20) 

(5.21) 
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where N u  a'b is a real-valued positive function of position. Also 

~s~ .~ = o s ~  ~ n (os~ ,~ u os~ ,~ ) (5.22) 

where OSfi, b represents the bounding surface excluding the common boundary between the 
two fluid phases. The side walls support Dirichlet or Neumann conditions and the 
horizontal surfaces that bound the container support Robin conditions in general. Along 
the common boundary we have 

0~' = aOi b, (5.23) 

vOi~ . n = f l vOb " n,  (5.24) 

with 

. = ( r _ , -  7 ; ) / ( r s -  L), (5.25) 

where T_ 8 represents the temperature of the top surface, T s the temperature of the 
common surface and T~ is the temperature of the bottom surface and 

fl = a k b / k  a (5.26) 

i.e. 13 is related to the ratio of thermal conductivities. A weak restriction that we shall place 
is 

fasoO,~vO,~.ndS ~ and f a s f l b v O b ' n d S  b <~ 0. (5.27) 

The boundary data is abbreviated as B(Qi )  = 0. It turns out that this is true automatically 
when Nua'b--* oo, It is noteworthy that 0 a and V0 F • n at the common boundary are 
related by a Robin condition of the form of equation (2.24) but this serves only to 
decouple the events in both places. 

Using the same methodology as in Section 4 we have 

dap,~ dOp,b 
( L ,  + L 2 ) Q ' =  +----~---+sQ~ (5.28) 

K1 

and 

B ( Q ' )  = 0 (5.29) 

where Q~ is an eight-vector given by 

U, a v,a w 'a  ,~0 ,  a ot*u'b a*V ,b a * W  ,b ) Q ~ -  PraK l , PraK ~ , PraK I , PrbK 2 , PrbK z , ProK 2 , 8flaa*O 'b . (5.30) 
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6. Inequalities for steady convection and linearized stability for case (b) 

The methods in this section follow closely those of Sections 3 and 4. We will delete many 
of the algebraic details. They can be obtained from the author on request. We will be 
concerned with the problem for fixed Ra b, therefore equation (5.13a) will be used. 

Property 6.1. For the thermoconvective problem given by case (b) we have 

O Ra~/O Ra b < 0. 

We prove this by differentiating equation (5.14) and the boundary data with respect to 
Ra b. We observe that (L 1 + L2) is indeed self-adjoint with respect to the inner product 
given by equation (3.1). Further, B(Qo) is also self-adjoint. 

On application of the Fredholm alternative or in other words the methodology in 
proofs of properties in Sections 3 and 4 we have 

• "x a 

Ra______o f .  60~V200~df, = _ f  80bV200b _ ~ 8  df,b 
K 1Pr 2 - v. Ph Prb K2 

(6.1) 

where 1/a and f"b are taken over the domains of fluid 'a '  and fluid 'b' and l~a 0 denotes 
Ra~/O Ra b. Equation (6.1) yields Property 6.1. 
We consider the variation with respect to fl by differentiating equation (5.14) and the 

attendant boundary conditions with respect to ft. We obtain 

1 a ~ a  1 b ~ b  (L, +L2)O= d P; +go. (6.2) 

The tilde sign ( - )  refers to derivatives with respect to fl, and 

t t ) h 0 -  0, 0, PraK I , 0, 0, 0, 0, 0 . (6.3) 

The boundary conditions remain unchanged in form except at the interface where 

= Bv 0 .. + v00 -. (6.4) 

Application of the Fredholm alternative yields 

_o,f   0:1 as, T z  z=~ dSc = Fr~-~ f¢oW,~8~dPa. (6.5) 

is the location of the interface ~S~. The left-hand side of equation (6.5) is negative. We 
hence have Property 6.2. 

Property 6.2. For the thermoconvective problem given by case (b) ORa~o/Ofl > O. This 
result causes us to consider the behavior of Ra~ with Nu b. Here Nu b is a positive 
real-valued function and defined at the upper horizontal boundary of phase 'b'. Differen- 
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tiating the equations given by (5.14) yields 

aOpo 
= + - " 0 + / ~ 0 ,  ( 6 .6 )  (L1 + L 2 ) 0 0  

where '^' overbars reflect differentiation with respect to Nu b. [lto is identical to/~,  given by 
equation (6.3), with the exception that ' - '  signs are replaced by '^' overbars. The 
boundary conditions remain unchanged in form everywhere except at the top surface of 
fluid 'b'. The condition here is 

+ + 0: = 0. 

The Fredholm alternative gives 

A a 

P r ~ ,  vo "°s' (0~) [z=~dS, 

(6.7) 

(6.8) 

where ~ is the location of the top surface 0St. This leads to Property 6.3 which states that 
ORa~/0Nub > 0. An analogous result for thermal convection in single fluid layers has 
been shown by Joseph [4]. 

The domain size has an effect on Ra~ but the results can be made more definitive by 
considering the linearized stability problem. We state two properties. 

Property 6.4. If the eigenvalues Ra~ for equation (5.14) are simple and 

then 

( ~ 0 / / 0 8  )Ra~ 
(~ Ra~/O8) < 0. (6.9) 

Property 6.5. For conditions of Property 6.4, 

(3 Ra~o/OL, ) 
< 0. (6.10) 

The proofs for Properties (6.4) and (6.5) follow in the same manner as those of Property 
(4.4). We do not give the details of algebra here but indicate that a lemma, quite similar to 
Property (4.2) is needed. L~ is the width of a rectangular container. 

7. S u m m a r y  and c o n c l u s i o n s  

We have employed parametric differentiation of self-adjoint operators and a modified 
form of the Fredholm alternative in order to arrive at a number of differential inequalities 
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Summary of results 
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Parameter Case (a) Case (b) 

*L 1 

Ra b 

O.a  
~--~ >0, <o 0~h- >0 

Rao 

 "ao 

( ~ o  ] O Ra~ 
~ ( R a o L 4 ) > 0  ~1  ) Ra /-"~-1 <0 0L1 

0 Ra~ 
- -  < 0 and 

Ra b 

Nu b _ 0 Ra_~ > 0 
ONu b 

A restriction is that 0 o / 0  Ra)Ra o > 0 for case (a) and (~o/~  Raa)Ra$ > 0 for case (b). 
* For this parameter we consider only rectangular containers. 

for thermoconvective motion in bilayers. These have been done for containers of arbitrary 
cross section and fairly general boundary conditions. We refer to Table 1. 

For the case of the Rayleigh-Jeffreys problem our results on variation with the ratio of 
thermal conductivities agree with the trends shown by Nield [6]. The horizontal domain 
dependence yields definitive results on the variation of critical Rayleigh numbers. These 
results are similar to those of Vrentas et al. [16], who discuss the axisymmetric motion in a 
circular cylindrical container. The vertical-domain-size dependence on the other hand does 
not yield a definite result when Ra 0 is considered. Hence use of linear stability methods 
are made and a useful relation arises. This is reflected in Table 1. 

The formulation of the problem for the case of thermal convection in bilayers of fluids 
is considerably more involved. Two important parameters arise - namely the Rayleigh 
numbers for the lower and upper fluids. We examine the variation of Ra ~, (the Rayleigh 
number for the lower fluid) while Ra b is kept fixed, with respect to domain size, boundary 
conditions and fluid properties. Definite results are obtained for variation with respect to 
domain size only when a linear stability analysis is also performed. The monotonic 
dependence of Ra a on Nusselt number and conductivity ratio (fl) is shown in Table 1. It 
is quite possible to examine the dependence of Ra b on various parameters by utilizing the 
above methods. An implicit assumption which is made in the linearised stability analysis is 
the Rayleigh numbers are such that o vs fl, L l or ~ curves pass through o equal to zero. 
The key tool that helps in the entire analysis is the ability to form a self-adjoint operator 
with respect to a certain inner product. 
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